Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Super Resolution Generative Adversarial Networks for Multi-Fidelity Pressure Distribution Prediction


    Beteiligte:

    Kongress:

    AIAA SCITECH 2023 Forum



    Erscheinungsdatum :

    01.01.2023




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Image Super-Resolution Using Quality Aware Generative Adversarial Networks

    Jinzhen, Mu / Shuo, Zhang / Yu, Zhang et al. | British Library Conference Proceedings | 2022


    Image Super-Resolution Using Quality Aware Generative Adversarial Networks

    Jinzhen, Mu / Shuo, Zhang / Yu, Zhang et al. | TIBKAT | 2022


    Image Super-Resolution Using Quality Aware Generative Adversarial Networks

    Jinzhen, Mu / Shuo, Zhang / Yu, Zhang et al. | Springer Verlag | 2021


    Generating High-fidelity Cybersecurity Data With Generative Adversarial Networks

    Le, Joie / Viswanathan, Arun / Zhang, Yuening | AIAA | 2020


    CyberGAN: Generating High-Fidelity Cybersecurity Data with Generative Adversarial Networks (GANs)

    Viswanathan, Arun A / Zhang, Yuening / Le, Joie et al. | NTRS | 2020