In this paper, we pay attention to the analytical method named, ansatz method for finding the exact solutions of the variable-coefficient modified KdV equation and variable coefficient diffusion-reaction equation. As a result the singular 1-soliton solution is obtained. These solutions are important for the explanation of some practical physical problems. The obtained results show that these methods provides a powerful mathematical tool for solving nonlinear equations with variable coefficients. This method can be extended to solve other variable coefficient nonlinear partial differential equations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Singular 1-soliton solution of the nonlinear variable-coefficient diffusion reaction and mKdV equations


    Beteiligte:
    Guner, Ozkan (Autor:in) / Bekir, Ahmet (Autor:in) / Unsal, Omer (Autor:in) / Cevikel, Adem C (Autor:in) / Sivasundaram, Seenith (Herausgeber:in)

    Kongress:

    ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences ; 2016 ; La Rochelle, France


    Erschienen in:

    Erscheinungsdatum :

    27.01.2017


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Soliton solution and other solutions to a nonlinear fractional differential equation

    Guner, Ozkan / Unsal, Omer / Bekir, Ahmet et al. | American Institute of Physics | 2017


    Switching Characteristics of Variable Coupling Coefficient Nonlinear Directional Coupler

    Liu, G. J. / Liang, B. M. / Jin, G. L. et al. | British Library Online Contents | 2004