The paper investigates the motion of a spherical pendulum with a movable pivot. The developed and studied dynamic model represents many mechanical systems – a crane with a freely suspended payload, a helicopter carrying a payload, rockets, cable-driven parallel manipulators, etc. The modelled spherical pendulum has six degrees of freedom and comprises two concentrated masses connected through a rope. The mechanical system equations of motion are derived using the Lagrange method. A special feature of the developed model is that it allows the study of the deformation and force in the rope. The motion of the pivot is simulated to follow a spatial straight-line trajectory while the driving forces applied to the upper mass are computed as proportional to the position and velocity errors. The results indicate that when the pivot moves according to smoothly changing trajectories, the swing angles of the pendulum are small, and the dynamic coefficient in the rope is also minimal. The resulting nonlinear mathematical model was linearized, and the linearization error was estimated. The obtained equations were used for modal analysis of the system. The linearized model is especially applicable in developing and testing automatic control algorithms to control the considered system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Motion analysis of a spherical pendulum with a movable pivot


    Beteiligte:
    Jivkov, Venelin (Autor:in) / Mitrev, Rosen (Autor:in) / Stoilova, Svetla D. (Herausgeber:in) / Pavlov, Nikolay L. (Herausgeber:in) / Todorov, Michael D. (Herausgeber:in) / Kralov, Ivan M. (Herausgeber:in) / Nikolov, Nikolay D. (Herausgeber:in) / Stoilov, Valeri M. (Herausgeber:in)

    Kongress:

    14TH INTERNATIONAL SCIENTIFIC CONFERENCE ON AERONAUTICS, AUTOMOTIVE, AND RAILWAY ENGINEERING AND TECHNOLOGIES ; 2022 ; Sozopol, Bulgaria


    Erschienen in:

    Erscheinungsdatum :

    10.04.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    INVERTED PENDULUM MOVABLE BODY

    TAKAHASHI MICHIO | Europäisches Patentamt | 2019

    Freier Zugriff

    INVERTED PENDULUM TYPE MOVABLE BODY

    AOKI HIDESUKE / INABA YOSHINORI | Europäisches Patentamt | 2015

    Freier Zugriff

    INVERTED PENDULUM TYPE MOVABLE BODY

    IINO TOMOHIRO / MOCHIZUKI KENJI / SOWA MARI | Europäisches Patentamt | 2018

    Freier Zugriff

    Impulse Pendulum with Adjustable Pivot Point for Measuring Coupling Coefficient

    J. S. Harchanko / F. B. Mead / C. W. Larson | NTIS | 2004


    INVERTED PENDULUM TYPE MOVABLE BODY

    TAKAHASHI MASAHIRO / FUJISHIMA TAKAHIRO | Europäisches Patentamt | 2018

    Freier Zugriff