Traffic prediction technology is important for intelligent transportation systems. To improve the performance of traffic prediction, this paper proposes a deep learning method for short term traffic prediction. The ground traffic data from microwave sensors at 2nd Ring road, Beijing, China, was selected as the candidate dataset. A stacked auto-encoder neural network (SAE-DNN) model is introduced to forecast short term traffic conditions. First, the SAE model is applied to extract inherent information within historical raw data. Second, output of the SAE model is used as the input of DNN model to perform the calibration and validation of DNN model. Finally, the optimal prediction result can act as a referenced traffic condition in the next period. Testing results show that the SAE-DNN model is an obvious improvement of traffic prediction compared to the traditional back-propagation neural network (BPNN).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Urban Short-Term Traffic Flow Prediction Based on Stacked Autoencoder


    Beteiligte:
    Zhao, Xinran (Autor:in) / Gu, Yuanli (Autor:in) / Chen, Lun (Autor:in) / Shao, Zhuangzhuang (Autor:in)

    Kongress:

    19th COTA International Conference of Transportation Professionals ; 2019 ; Nanjing, China


    Erschienen in:

    CICTP 2019 ; 5178-5188


    Erscheinungsdatum :

    02.07.2019




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal Stacked Sparse Autoencoder Based Traffic Flow Prediction in Intelligent Transportation Systems

    Neelakandan, S. / Prakash, M. / Bhargava, Sanjay et al. | Springer Verlag | 2022



    Urban Short-Term Traffic Flow Prediction Based on Neuro-FDT

    Jin, H. / China Communications and Transportation Association; Transportation & Development Institute (American Society of Civil Engineers) | British Library Conference Proceedings | 2007


    The Urban Road Short-Term Traffic Flow Prediction Research

    Qin, Zhen Hai | Trans Tech Publications | 2013


    Spatio-Temporal AutoEncoder for Traffic Flow Prediction

    Liu, Mingzhe / Zhu, Tongyu / Ye, Junchen et al. | IEEE | 2023