The traffic congestion becomes a severe problem in almost every city, and intelligent transportation systems make it possible for an adaptive traffic signal control system to improve signal control. Exploiting deep reinforcement learning for traffic signal control is a frontier topic in intelligent transportation research. However, it’s hard to use centralized reinforcement learning for large-scale traffic signal control systems due to the high dimensions of the joint action space. Multi-agent deep reinforcement learning overcomes the curse of dimensions but introduces a new problem: how to learn coordination between agents under a partially observable traffic environment. In this paper, we introduce a multi-agent deep reinforcement learning algorithm for a large-scale traffic signal control system. The proposed method is compared with greedy policy, independent Q-learning method, and independent actor critic method in a large synthetic traffic networks. The simulation demonstrates the proposed method is more efficient than other decentralized reinforcement learning approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control


    Beteiligte:
    Zhao, Yang (Autor:in) / Hu, Jian-Ming (Autor:in) / Gao, Ming-Yang (Autor:in) / Zhang, Zuo (Autor:in)

    Kongress:

    20th COTA International Conference of Transportation Professionals ; 2020 ; Xi’an, China (Conference Cancelled)


    Erschienen in:

    CICTP 2020 ; 458-470


    Erscheinungsdatum :

    09.12.2020




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bus priority traffic signal cooperative control method based on multi-agent deep reinforcement learning

    WANG CONGYU / WANG CHONG / LI LEQI et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Multi-agent reinforcement learning traffic signal cooperative control method considering intersection heterogeneity

    BIE YIMING / JI YUTING / JI JINHUA et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning

    Bacchiani, Giulio / Molinari, Daniele / Patander, Marco | ArXiv | 2019

    Freier Zugriff

    Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control

    Chu, Tianshu / Wang, Jie / Codeca, Lara et al. | IEEE | 2020