The model for real-time traffic flow prediction of intersections based on wavelet neural network is proposed. The main characteristics of this model are that the laws of traffic flow can be learned dynamically using wavelet network. Therefore, there is no complicated computation for the model learning process and it can also learn from historical data constantly. The experimental results show the effectiveness of the model with such properties as simple structure of network and fast convergence.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Flow Prediction of Intersections Using Wavelet Neural Network


    Beteiligte:
    Li, Sheng (Autor:in)

    Kongress:

    Seventh International Conference on Applications of Advanced Technologies in Transportation (AATT) ; 2002 ; Boston Marriot, Cambridge, Massachusetts, United States



    Erscheinungsdatum :

    31.07.2002




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic Flow Prediction of Intersections Using Wavelet Neural Network

    Li, S. / American Society of Civil Engineers | British Library Conference Proceedings | 2002


    Traffic flow prediction using neural network

    Jiber, Mouna / Lamouik, Imad / Ali, Yahyaouy et al. | IEEE | 2018


    TRAFFIC FLOW AT INTERSECTIONS

    TSFASMAN ARKADIY O / WERNER JOHN S / CATALANO PASQUALE A et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Traffic flow at intersections

    TSFASMAN ARKADIY O / WERNER JOHN S / CATALANO PASQUALE A et al. | Europäisches Patentamt | 2021

    Freier Zugriff