This paper demonstrates the application of particle swarm optimization (PSO) to the programming of pavement maintenance activities at the network level. Furthermore, the application of the PSO technique and its relevance to solving the programming problem in a pavement management system (PMS) is discussed. The robustness and quick search capability of PSO enables it to effectively handle the highly constrained problem of pavement management activities programming, which has an extremely large solution space of astronomical scale. Examples are presented to highlight the versatility of PSO in accommodating different forms of objective functions and comparing the results with the genetic algorithm (GA). This paper compares PSO and GA with respect to rate of convergence and accuracy of modeling PMS using an example problem. The results of this paper confirmed the potential of PSO to successfully model the PMS.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparison between GA and PSO in Analyzing Pavement Management Activities


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    13.06.2013


    Format / Umfang :

    62014-01-01 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt