This paper presents a hybrid evolutionary technique for solving train-scheduling problem. The proposed approach exploits key features of genetic algorithm (GA) and Tabu search (TS) in order to find nearly optimal feasible solution. Strategic oscillation is incorporated in GA to diversify the search space. The objective is to minimize the associated delays caused by train conflicts (cross or overtake) that is the waiting times at the train stations. The necessary algorithmic solution is described together with some empirical observations about the performance of our train-scheduling model. The simulation results show that our model is able to produce useful results in terms of minimizing delays and producing nearly optimal schedules.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Effective Meta-Heuristic Technique for Solving Train Scheduling Problem


    Beteiligte:
    Khan, M. B. (Autor:in) / Fan, Wangbo (Autor:in) / Zhang, Dianye (Autor:in)

    Kongress:

    First International Conference on Transportation Engineering ; 2007 ; Southwest Jiaotong University, Chengdu, China



    Erscheinungsdatum :

    09.07.2007




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An Effective Meta-Heuristic Technique for Solving Train Scheduling Problem

    Khan, M.B. / Fan, W. / Zhang, D. et al. | British Library Conference Proceedings | 2007


    Meta-Heuristic Algorithms for Aircraft Sequencing and Scheduling Problem

    Cecen, Ramazan Kursat / Durmazkeser, Yunus | Springer Verlag | 2022


    An efficient meta-heuristic algorithm for solving capacitated vehicle routing problem

    Faiz, Alfian / Subiyanto, Subiyanto / Arief, Ulfah Mediaty | BASE | 2018

    Freier Zugriff

    Meta Planning Approach to Train Scheduling

    Vilela, Plinio / Brocchetto, Sérgio / Dias, Rafael et al. | British Library Conference Proceedings | 2015