This paper presents a Hidden Markov Model (HMM) based fuzzy model of short-term traffic forecasting. The model uses three sequential phases. Firstly, the HMM is used to partition the traffic flow data according to the ordering of the calculated log-likelihood values. Then, a recursive top-down algorithm is used to generate the minimum number of rules for accurate forecasting. Finally, a gradient descent method is applied to fine-tune the model parameters. To verify the method in real situation, an experimental model is constructed to produce traffic flow forecasting of freeway in CA, USA based on actual data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    HMM Based Fuzzy Model for Short-Term Traffic Forecasting


    Beteiligte:
    Chang, Gang (Autor:in) / Zhang, Yi (Autor:in) / Yao, Danya (Autor:in) / Yue, Yun (Autor:in)

    Kongress:

    First International Conference on Transportation Information and Safety (ICTIS) ; 2011 ; Wuhan, China


    Erschienen in:

    ICTIS 2011 ; 1856-1862


    Erscheinungsdatum :

    16.06.2011




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fuzzy Comprehensive Assessment of Short-term Traffic Flow Forecasting

    Hongyan, X. / Shunying, Z. / Hong, W. | British Library Online Contents | 2005



    Hybrid Neuro-Fuzzy Application in Short-Term Freeway Traffic Volume Forecasting

    Park, B. / Transportation Research Board | British Library Conference Proceedings | 2002



    Hybrid Neuro-Fuzzy Application in Short-Term Freeway Traffic Volume Forecasting

    Park, Byungkyu “Brian” | Transportation Research Record | 2002