Ship detection from space is an important application for maritime traffic surveillance. However, fewer efforts were devoted to research on automatic detection from optical satellite imagery. This paper presents current progress in ship detection from optical imagery and provides an automatic ship detection algorithm based on the combination of a random saliency map and an image pyramid to detect vessels in ports or straits. The algorithm was tested with an average detectability of 83.2% for large and medium vessels and false alarm rate of 33.5%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Method of Ship Detection in Optical Satellite Image Based on Saliency Map


    Beteiligte:
    Li, Zehui (Autor:in) / Xie, Xiaofang (Autor:in) / Zhao, Weihua (Autor:in) / Liu, Yong (Autor:in)

    Kongress:

    Second International Conference on Transportation Information and Safety ; 2013 ; Wuhan, China


    Erschienen in:

    ICTIS 2013 ; 2439-2447


    Erscheinungsdatum :

    11.06.2013




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Ship Detection Model in Optical Satellite Image

    Hu, Xiao Guang ;Cheng, Cheng Qi ;Li, De Ren | Trans Tech Publications | 2014


    MULTI-SCALE SALIENCY-BASED SHIP DETECTION IN SAR IMAGES

    Qian, J. / Yu, Y. / Bi, F. | TIBKAT | 2021


    Port ship Detection Based on Visual Saliency model and Center Dark Channel Prior

    Wenbin, Gong / Zhangsong, Shi / Chengxu, Feng et al. | IEEE | 2020


    Ship Detection in Optical Satellite Images Based on Sparse Representation

    Zhou, Haotian / Zhuang, Yin / Chen, Liang et al. | Springer Verlag | 2017