In recent years, the development of big data acquisition and storage, computer technology and communication technology has provided new momentum for ITS, while traffic speed prediction is a core link of ITS. In order to achieve large-scale traffic forecasting in urban road network and extract the time series feature and spatial feature of road network speed evolution, a spatiotemporal prediction method based on 3D convolution neural network is proposed in this paper, using gridded historical traffic data and corresponding road network traffic speed for training. Finally, in the empirical analysis stage, 3D CNN is evaluated and compared with the prediction results of 2D CNN, LSTM, and BPNN models on the whole, midweek and weekend. Experimental results show that the MAE, MAPE, and RMSE indices of the test set are at least 10% better than other models. It has a good performance in the actual road network traffic speed prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Large-Scale Spatiotemporal Prediction Method of Traffic Speed Based on 3D Convolutional Neural Network


    Beteiligte:
    Niu, Yuxin (Autor:in) / Yu, Haiyang (Autor:in) / Ren, Yilong (Autor:in)

    Kongress:

    20th COTA International Conference of Transportation Professionals ; 2020 ; Xi’an, China (Conference Cancelled)


    Erschienen in:

    CICTP 2020 ; 163-172


    Erscheinungsdatum :

    09.12.2020




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction

    Asif, Muhammad Tayyab / Dauwels, Justin / Goh, Chong Yang et al. | IEEE | 2014


    Spatial and Temporal Patterns in Large-Scale Traffic Speed Prediction.
    Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction

    Asif, Muhammad Tayyab / Dauwels, Justin / Oran, Ali et al. | DSpace@MIT | 2014

    Freier Zugriff

    Multi-scale traffic flow prediction method based on graph convolutional neural network

    ZHANG MEIYUE / WANG SENZHANG / MIAO HAO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction

    Cao, Shuqin / Wu, Libing / Zhang, Rui et al. | IEEE | 2024