One of the key elements for an effective ATMIS is the ability to predict traffic conditions with reasonable accuracy such that transportation system users are able to make better travel decisions. This study evaluates and implements a traffic prediction model on I-4. The performance is evaluated against different prediction horizons and traffic conditions. The algorithm was also used to support the implementation of an online traffic prediction system that provides the freeway travelers with predicted travel times and delays along the freeway corridor.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online Implementation of a Short-Term Traffic Prediction Model


    Beteiligte:
    Ishak, Sherif (Autor:in) / Al-Deek, Haitham (Autor:in)

    Kongress:

    Seventh International Conference on Applications of Advanced Technologies in Transportation (AATT) ; 2002 ; Boston Marriot, Cambridge, Massachusetts, United States



    Erscheinungsdatum :

    31.07.2002




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Online Implementation of a Short-Term Traffic Prediction Model

    Ishak, S. / Al-Deek, H. / American Society of Civil Engineers | British Library Conference Proceedings | 2002


    Online Recursive Algorithm for Short-Term Traffic Prediction

    Yang, F. / Yin, Z. / Liu, H. X. et al. | British Library Conference Proceedings | 2004



    Online Recursive Algorithm for Short-Term Traffic Prediction

    Yang, Fan / Yin, Zhaozheng / Liu, Henry et al. | Transportation Research Record | 2004


    Long short-term memory model for traffic congestion prediction with online open data

    Yuan-yuan Chen / Lv, Yisheng / Li, Zhenjiang et al. | IEEE | 2016