Humans are error-prone in the presence of multi- ple similar tasks. While Human-Robot Collaboration (HRC) brings the advantage of combining the superiority of both humans and robots in their respective talents, it also requires the robot to communicate the task goal clearly to the human col- laborator. We formalize such problems in interactive assembly tasks with hidden goal Markov decision processes (HGMDPs) to enable the symbiosis of human intention recognition and robot intention expression. In order to avoid the prohibitive computa- tional requirements, we provide a myopic heuristic along with a feature-based state abstraction method for assembly tasks to approximate the solution of the resulting HGMDP. A user study with human subjects in round-based LEGO assembly tasks shows that our algorithm improves HRC and helps the human collaborators when the task goal is unclear to them.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Legible Action Selection in Human-Robot Collaboration


    Beteiligte:
    Zhu, Huaijiang (Autor:in) / Gabler, Volker (Autor:in) / Wollherr, Dirk (Autor:in)

    Erscheinungsdatum :

    06.09.2017


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    004 / 629 / 620




    A Game-Theoretic Approach for Adaptive Action Selection in Close Distance Human-Robot-Collaboration

    Gabler, Volker / Stahl, Tim / Huber, Gerold et al. | BASE | 2019

    Freier Zugriff

    HUMAN-ROBOT COLLABORATION

    FELIP LEON JAVIER / AHUJA NILESH / CAMPOS MACIAS LEOBARDO et al. | Europäisches Patentamt | 2021

    Freier Zugriff


    Learning Action Duration and Synergy in Task Planning for Human-Robot Collaboration

    Samuele Sandrini / Marco Faroni / Nicola Pedrocchi | BASE | 2022

    Freier Zugriff