A growing number of real-world control problems require teams of software agents to solve a joint task through cooperation. Such tasks naturally arise whenever human workers are replaced by machines, such as robot arms in manufacturing or autonomous cars in transportation. At the same time, new technologies have given rise to novel cooperative control problems that are beyond human reach, such as in package routing. Be it for physical constraints such as partial observability, robustness requirements, or to manage large joint action spaces, cooperative agents are often required to function in a fully decentralised fashion. This means that each agent merely has access to its own local sensory input during task execution, and does not have explicit communication channels to other agents. Deep multi-agent reinforcement learning (DMARL) is a natural framework for learning control policies in such settings. When trained in simulation or in a laboratory, learning algorithms often have access to additional information that will not be available at execution. Such centralised training with decentralised execution (CTDE) poses a number of technical challenges to DMARL algorithms that try to exploit the centralised setting in order to facilitate the training of decentralised policies. These difficulties arise primarily from the apparent incongruency between joint policy learning, which can learn arbitrary policies but is not naively decentralisable and scales poorly with the number of agents, and independent learning, which is readily decentralisable and scalable but provably less expressive and prone to environment non-stationarity due to the presence other of learning agents. The first part of this thesis develops algorithms that use the technique of value decomposition in order to exploit the centralised training of decentralised policies. In Monotonic Value Factorisation for Deep Multi-Agent Reinforcement Learning, we introduce the novel Q-learning algorithm QMIX. QMIX uses a centralised monotonic mixing network in ...


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Coordination and communication in deep multi-agent reinforcement learning



    Erscheinungsdatum :

    12.04.2022


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629 / 006




    A multi‐agent deep reinforcement learning approach for traffic signal coordination

    Hu, Ta‐Yin / Li, Zhuo‐Yu | Wiley | 2024

    Freier Zugriff

    Optimizing Traffic Lights with Multi-agent Deep Reinforcement Learning and V2X communication

    Hussain, Azhar / Wang, Tong / Jiahua, Cao | ArXiv | 2020

    Freier Zugriff

    GCS: Graph-Based Coordination Strategy for Multi-Agent Reinforcement Learning

    Ruan, J / Du, Y / Xiong, X et al. | BASE | 2022

    Freier Zugriff

    Multi-Agent Deep Reinforcement Learning in Vehicular OCC

    Islam, Amirul / Musavian, Leila / Thomos, Nikolaos | IEEE | 2022