Abstract: To properly orchestrate challenging services such as those deployed for Vehicle-to-Everything (V2X) use cases, MANO systems need to be intelligent and automated. Network Function Virtualization (NFV) and Machine Learning (ML) provide opportunities for automating MANO operations, and this paper presents our MI-enhAnced Edge Service orchesTRatiOn (MAESTRO) algorithm that makes proactive ML-driven decisions for edge service relocation to ensure Quality of Service (QoS) guarantees for V2X services. Moreover, to validate the effectiveness of our proposed solution, we have performed the experimentation using real-life testbeds for high computing and smart mobility i.e., Smart Highway and Virtual Wall, located in Antwerp and Gent, Belgium. The contribution of our paper is two-fold: i) we study the interrelation between the Key Performance Indicators (KPIs) measured at the vehicle client side, and the infrastructure metrics at the edge computing nodes and ii) we propose and evaluate an ML-based quality-aware algorithm that automates edge service orchestration to decrease average latency while guaranteeing high service availability and reliability.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    An ML-driven framework for edge orchestration in a vehicular NFV MANO environment


    Beteiligte:

    Erscheinungsdatum :

    01.01.2023


    Anmerkungen:

    2331-9852 ; Consumer Communications and Networking Conference, CCNC IEEE


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Data Driven Service Orchestration for Vehicular Networks

    Dalgkitsis, Anestis / Mekikis, Prodromos-Vasileios / Antonopoulos, Angelos et al. | IEEE | 2021



    Mano supersonic cockpit

    ASHBY BERNARD | Europäisches Patentamt | 2018

    Freier Zugriff

    Freno de mano

    HOBBS DAVE | Europäisches Patentamt | 2019

    Freier Zugriff

    Carrito de mano y kit de reajuste para reajustar tal carrito de mano

    HERZOG-LANG VIKTOR | Europäisches Patentamt | 2017

    Freier Zugriff