System identification of a Two-Wheeled Robot (TWR) through nonlinear dynamics is carried out in this paper using a data-driven approach. An Artificial Neural Network (ANN) is used as a kinematic estimator for predicting the TWR’s degree of movement in the directions of x and y and the angle of rotation Ψ along the z-axis by giving a set of input vectors in terms of linear velocity ‘V’ (i.e., generated through the angular velocity ‘ω’ of a DC motor). The DC motor rotates the TWR’s wheels that have a wheel radius of ‘r’. Training datasets are achieved via simulating nonlinear kinematics of the TWR in a MATLAB Simulink environment by varying the linear scale sets of ‘V’ and ‘(r ± ∆r)’. Perturbation of the TWR’s wheel radius at ∆r = 10% is introduced to cater to the robustness of the TWR wheel kinematics. A trained ANN accurately modeled the kinematics of the TWR. The performance indicators are regression analysis and mean square value, whose achieved values met the targeted values of 1 and 0.01, respectively. ; © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). ; fi=vertaisarvioitu|en=peerReviewed|


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Efficient System Identification of a Two-Wheeled Robot (TWR) Using Feed-Forward Neural Networks



    Erscheinungsdatum :

    02.11.2022


    Anmerkungen:

    URN:NBN:fi-fe2022113068285
    WOS:000883864700001 ; Scopus:85141703914


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Fast and Efficient Learning Algorithms for Feed-forward Neural Networks

    Karayiannis, N. B. / Venetsanopoulos, A. N. / IEEE et al. | British Library Conference Proceedings | 1994


    Control method, auxiliary system of wheeled robot and wheeled robot

    GU ZHENJIANG / GAO YAOTING | Europäisches Patentamt | 2022

    Freier Zugriff

    Wheeled robot

    LAN YI / LIU WEIQIANG | Europäisches Patentamt | 2020

    Freier Zugriff

    Wheeled robot

    GAO ZHIGANG / XU SHU / HAN JIA'AN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Modeling space shuttle main engine using feed-forward neural networks

    Saravanan, N. / Duyar, A. / Guo, T.-H. et al. | AIAA | 1994