Makroskopische Verkehrsmodelle sind ein wesentliches Hilfsmittel bei der Beurteilung und Steuerung von Verkehrsflüssen auf Hauptverkehrsadern. Für die notwendige Beeinflussung des Verkehrsablaufs werden Online-Messungen und prognostische numerische Simulationen benötigt. Für die Simulationen bieten sich makroskopische Verkehrsmodelle an, die den Verkehr als kontinuierliche Fahrzeugströmeabbilden. Aufgrund der Analogie zu den Modellen der Strömungsmechanik lassen sich die numerischen Verfahren aus diesem Bereich auch zur Lösung makroskopischer Verkehrsmodelle verwenden. Es wird eine Finite-Elemente-Approximation für die numerische Umsetzung makroskopischer Verkehrsmodelle vorgestellt. Exemplarisch wird sie am Verkehrsmodell von Kerner und Konhäuser erläutert. Dieses und andere makroskopische Verkehrsmodelle wurden bisher mit der Methode der Finiten Differenzen gelöst. Die vorgestellte Approximation entspricht einem Petrov-Galerkin-Verfahren, bei dem der Fehler eines Standard-Galerkin-Verfahrens mit Hilfe eines Upwinding-Koeffizienten minimiert wird. Die Wahl des Upwinding-Koeffizienten ist übertragbar und basiert ausschließlich auf dem Charakter der zugrundeliegenden Gleichungen. Die Ergebnisse zeigen typische Phänomene eines Verkehrsablaufs wie die Entstehung von Stop-and-Go-Wellen oder Staus. Die Finite-Elemente-Methode erweist sich für unter-schiedlichste Verkehrsmodelle als ausgesprochen stabil.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Numerische Approximation makroskopischer Verkehrsmodelle mit der Methode der Finiten Elemente


    Beteiligte:

    Erscheinungsdatum :

    2000


    Anmerkungen:

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 22. bis 24.06.2000, Bauhaus-Universität Weimar, vol. 15, 2000



    Medientyp :

    Sonstige


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch






    Muendungsschallprognose mit der Finiten Elemente Methode

    Enderich,A. / Handel,R. / Bayerische Motorenwerke,BMW,Muenchen,DE et al. | Kraftfahrwesen | 1999



    Anwendungeder Methode der Finiten Elemente im Getriebebau

    Bauer,H. / Voith,Heidenheim | Kraftfahrwesen | 1976