Millimeter-Wave Radar is one promising sensor to achieve robust perception against challenging observing conditions. In this paper, we propose a Radar Inertial Odometry (RIO) pipeline utilizing a long-range 4D millimeter-wave radar for autonomous vehicle navigation. Initially, we develop a perception frontend based on radar point cloud filtering and registration to estimate the relative transformations between frames reliably. Then an optimization-based backbone is formulated, which fuses IMU data, relative poses, and point cloud velocities from radar Doppler measurements. The proposed method is extensively tested in challenging on-road environments and in-the-air environments. The results indicate that the proposed RIO can provide a reliable localization function for mobile platforms, such as automotive vehicles and Unmanned Aerial Vehicles (UAVs), in various operation conditions.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Robust Radar Inertial Odometry in Dynamic 3D Environments


    Beteiligte:
    Yang Lyu (Autor:in) / Lin Hua (Autor:in) / Jiaming Wu (Autor:in) / Xinkai Liang (Autor:in) / Chunhui Zhao (Autor:in)


    Erscheinungsdatum :

    2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    RADAR AIDED VISUAL INERTIAL ODOMETRY INITIALIZATION

    NIESEN URS | Europäisches Patentamt | 2019

    Freier Zugriff

    Radar aided visual inertial odometry initialization

    NIESEN URS | Europäisches Patentamt | 2020

    Freier Zugriff

    RADAR AIDED VISUAL INERTIAL ODOMETRY OUTLIER REMOVAL

    NIESEN URS | Europäisches Patentamt | 2019

    Freier Zugriff

    Radar aided visual inertial odometry outlier removal

    NIESEN URS | Europäisches Patentamt | 2019

    Freier Zugriff

    R3O: Robust Radon Radar Odometry

    Lubanco, Daniel Louback S. / Hashem, Ahmed / Pichler-Scheder, Markus et al. | IEEE | 2024

    Freier Zugriff