Reducing satellite failures and keeping satellites healthy in orbit are important issues. Current satellite systems have developed modules to detect anomalies on board. However, they only target a subset of anomaly types and heavily rely on expert knowledge. To address these limitations, this paper proposes a data-driven anomaly detection framework to detect point anomalies. We first propose the Deviation Divide Mean over Neighbors (DDMN) method to figure out the fake anomaly problem caused by data errors in the satellite telemetry data. Then, we use the Long Short-Term Memory (LSTM), a deep learning method, to model the multivariable time-series data, and a Gaussian model to detect anomalies. We applied our approach to the telemetry data collected from sensors on an in-orbit satellite for more than two years and demonstrate its superiority. Moreover, we explored what conditions could lead to false alarms. The approach proposed has been deployed to the ground station to monitor the health status of the in-orbit satellites.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Deep Learning Anomaly Detection Framework for Satellite Telemetry with Fake Anomalies


    Beteiligte:
    Yakun Wang (Autor:in) / Jianglei Gong (Autor:in) / Jie Zhang (Autor:in) / Xiaodong Han (Autor:in)


    Erscheinungsdatum :

    2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    EVALUATING ANOMALY DETECTION IN SATELLITE TELEMETRY DATA

    Nalepa, Jakub / Benecki, Pawel / Andrzejewski, Jacek et al. | TIBKAT | 2022


    An Explainable Machine Learning Approach for Anomaly Detection in Satellite Telemetry Data

    Kricheff, Seth / Maxwell, Emily / Plaks, Connor et al. | IEEE | 2024


    European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry

    Kotowski, Krzysztof / Haskamp, Christoph / Andrzejewski, Jacek et al. | ArXiv | 2024

    Freier Zugriff

    Supporting Anomaly Detection from Satellite Telemetry Data by Regression Trees

    Nakatsugawa, M. / Yairi, T. / Isihama, N. et al. | British Library Conference Proceedings | 2004


    Satellite Telemetry Anomaly Detection Based on Gradient Boosting Regression with Feature Selection

    Li, Zhidong / Sun, Bo / Jin, Weihua et al. | Springer Verlag | 2021