The purpose of this paper is to rise the autonomous flight performance of the small unmanned aerial vehicle (UAV) using simultaneous tailplane of UAV and autopilot system design.
A small UAV is remanufactured in the UAV laboratory. Its tailplane can be changed before the flight. Autopilot parameters and some parameters of tailplane are instantaneously designed to maximize autonomous flight performance using a stochastic optimization method. Results found are applied for simulations.
Benefitting simultaneous tailplane of UAV and autopilot system design process, autonomous flight performance is maximized.
Authorization of Directorate General of Civil Aviation in Turkey is required for UAV flights.
Simultaneous tailplane and autopilot system design process is so useful for refining UAV autonomous flight performance.
Simultaneous tailplane and autopilot system design process fulfills confidence, high autonomous performance, and easy service demands of UAV users. By that way, UAV users will be able to use better UAVs.
Creating a novel technique to recover autonomous flight performance (e.g. less overshoot, less settling time and less rise time during trajectory tracking) of UAV and developing a novel procedure performing simultaneous tailplane of UAV and autopilot system design idea.
Simultaneous tailplane of small UAV and autopilot system design
Aircraft Engineering and Aerospace Technology ; 91 , 10 ; 1308-1313
30.07.2019
1 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Ice-Contaminated- Tailplane Stall
British Library Online Contents | 1997
|British Library Conference Proceedings | 1994
|