This paper aims to introduce a method based on the optimizer of the particle swarm optimization (PSO) algorithm to improve the efficiency of a Kriging surrogate model.

    Design/methodology/approach

    PSO was first used to identify the best group of trend functions and to optimize the correlation parameter thereafter.

    Findings

    The Kriging surrogate model was used to resolve the fuselage optimization of an unmanned helicopter.

    Practical implications

    The optimization results indicated that an appropriate PSO scheme can improve the efficiency of the Kriging surrogate model.

    Originality/value

    Both the STANDARD PSO and the original PSO algorithms were chosen to show the effect of PSO on a Kriging surrogate model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A novel improvement of Kriging surrogate model


    Beteiligte:
    He, Wei (Autor:in) / Xu, Yuanming (Autor:in) / Zhou, Yaoming (Autor:in) / Li, Qiuyue (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    19.12.2018


    Format / Umfang :

    1 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Refined Kriging Surrogate Model for Subset Simulation

    Braun, David / Shi, Dalong / Schwaiger, Florian et al. | AIAA | 2022


    Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling

    Han, Zhong-Hua / Görtz, Stefan | AIAA | 2012


    A Refined Kriging Surrogate Model for Subset Simulation

    Braun, David / Shi, Dalong / Schwaiger, Florian et al. | TIBKAT | 2022


    A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model

    Boopathy, Komahan / Rumpfkeil, Markus P. | AIAA | 2013


    A Kriging-PDD surrogate model for low-cost sensitivity analysis

    Cortesi, Andrea Francesco / Congedo, Pietro Marco | AIAA | 2016