The invention relates to a multi-satellite joint area coverage planning method based on an improved multi-objective evolutionary algorithm, and the method comprises the following steps: carrying out the regional decomposition of a to-be-covered area according to the imaging condition of each remote sensing satellite, and decomposing the to-be-covered area into discrete stripe sets of all remote sensing satellites; binary coding is carried out on stripes in the discrete stripe set, all individuals obtained after coding are used as input of an improved multi-objective evolutionary algorithm, and the improved multi-objective evolutionary algorithm realizes an extreme solution retention mechanism by utilizing combination of an NSGA-III algorithm and an S-CDAS algorithm; and constructing a multi-objective optimization model composed of a plurality of objective functions, and solving the multi-objective optimization model by using an improved multi-objective evolutionary algorithm to obtain a region coverage result. The improved multi-objective evolutionary algorithm can retain an extreme solution, so that a satisfactory area coverage result can be obtained based on the algorithm, and the rationality of an area coverage scheme can be optimized from other objective dimensions.

    本发明涉及一种基于改进多目标进化算法的多星联合区域覆盖规划方法,包括以下步骤:根据每个遥感卫星的成像条件对待覆盖区域进行区域分解,将待覆盖区域分解成所有遥感卫星的离散条带集;对离散条带集中的条带进行二进制编码,编码后得到的所有个体作为改进多目标进化算法的输入,改进多目标进化算法利用NSGA‑III算法和S‑CDAS算法的结合实现极端解保留机制;构建由多个目标函数组成的多目标优化模型,利用改进多目标进化算法对多目标优化模型进行求解,得到区域覆盖结果。本发明中的改进多目标进化算法能够保留极端解,进而基于该算法能够得到满意的区域覆盖结果,而且可以从其他目标维度优化区域覆盖方案的合理性。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Multi-satellite joint area coverage planning method based on improved multi-objective evolutionary algorithm


    Weitere Titelangaben:

    基于改进多目标进化算法的多星联合区域覆盖规划方法


    Beteiligte:
    HE QI'EN (Autor:in) / LI FENG (Autor:in) / ZHONG XING (Autor:in) / XU KAI (Autor:in)

    Erscheinungsdatum :

    27.06.2023


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B64G Raumfahrt , COSMONAUTICS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    Multi-objective Flight Schedule Optimization Based on Improved Evolutionary Algorithm

    Ding, Wenhao / Hu, Minghua / Su, Jiaming et al. | VDE-Verlag | 2022


    A novel model-based multi-objective evolutionary algorithm

    Wang, Maocai / Dai, Guangming / Peng, Lei et al. | British Library Online Contents | 2016


    A Multi-Objective Evolutionary Algorithm Based on Cloud Model

    Xu, B. / Peng, Z. / Chen, X. et al. | British Library Online Contents | 2012



    Multi - Objective Evolutionary Optimization

    Deb, K. / Indian Institute of Technology | British Library Conference Proceedings | 2000