The invention provides a method for traffic flow prediction through a course learning guided space-time network, and the method comprises the steps: employing a space-time network model, introducing a course learning module to evaluate the prediction difficulty of nodes in a traffic network, employing a training scheduler to gradually introduce training nodes from easy to difficult for the space-time network model, so as to improve the prediction capability; and then, a global space-time encoder with multiple space-time attention mechanisms is adopted, and the problem that original semantic information is diluted in a layer-by-layer transmission process is relieved through an interlayer residual scaling technology, so that global space-time correlation of nodes is captured, and traffic flow prediction is realized.

    本发明提供一种课程学习引导的时空网络用于交通流预测的方法,采用的时空网络模型通过引入课程学习模块,以评估交通网络中节点的预测难度,并采用训练调度器逐步为所述时空网络模型引入由易到难的训练节点,以提高预测能力;然后采用具有多头时空注意力机制的全局时空编码器,通过层间残差缩放技术缓解原始语义信息在逐层传递过程中被稀释的问题,以捕捉节点的全局时空相关性,从而实现交通流预测。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Method for traffic flow prediction by using space-time network guided by curriculum learning


    Weitere Titelangaben:

    一种课程学习引导的时空网络用于交通流预测的方法


    Beteiligte:
    CHEN XINLONG (Autor:in) / FU YANGGENG (Autor:in) / CHEN SHOUMING (Autor:in)

    Erscheinungsdatum :

    25.02.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    Traffic flow prediction method based on space-time attention network

    MA CHUANG / YAN LI / LIU SHUAIWU et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    Traffic flow prediction method based on space-time neural network

    YANG YU / GUO GUIBING | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow prediction method of space-time diagram convolutional network

    TENG FEI / WANG ZIDAN / QIAO LU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Efficient space-time traffic flow prediction method

    WANG XITE / WU QIONG / BAI MEI et al. | Europäisches Patentamt | 2024

    Freier Zugriff