The invention relates to the technical field of traffic flow prediction, and provides an urban traffic flow prediction method based on a graph convolutional network and related equipment. The method comprises the following steps: dividing a target city area into unit areas according to a plurality of division scales; according to all the traffic flow data and all the unit areas under the division scale, traffic flow time characteristics of the target city area are calculated; performing feature calculation on the traffic flow time features by using a graph convolutional network to obtain final traffic flow features of the target city region under each division scale; based on all the final traffic flow characteristics, obtaining predicted traffic flow data of the target urban area under each division scale, and determining a target division scale according to all the predicted traffic flow data; and performing traffic flow prediction on the to-be-predicted urban area according to the target division scale to obtain final predicted traffic flow data of the to-be-predicted urban area. According to the method, the accuracy of traffic flow prediction can be improved.

    本申请涉及交通流量预测技术领域,提供了一种基于图卷积网络的城市交通流量预测方法及相关设备。本申请的方法包括:将目标城市区域按照多个划分尺度划分为单元区域;根据所有交通流量数据和划分尺度下的所有单元区域,计算得到目标城市区域的交通流量时间特征;利用图卷积网络对交通流时间特征进行特征计算,得到在每个划分尺度下目标城市区域的最终交通流量特征;基于所有最终交通流量特征,获取在每个划分尺度下目标城市区域的预测交通流量数据,并根据所有预测交通流量数据确定出目标划分尺度;根据目标划分尺度对待预测城市区域进行交通流量预测,得到待预测城市区域的最终预测交通流量数据。本申请的方法能够提高交通流量预测的准确性。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Urban traffic flow prediction method based on graph convolutional network and related equipment


    Weitere Titelangaben:

    一种基于图卷积网络的城市交通流量预测方法及相关设备


    Beteiligte:
    LONG WANGCHEN (Autor:in) / LIN JIA (Autor:in) / YIN XUEMEI (Autor:in) / ZHANG TIANRU (Autor:in) / XIAO ZHU (Autor:in) / CHEN WENJIE (Autor:in)

    Erscheinungsdatum :

    28.03.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Topological Graph Convolutional Network-Based Urban Traffic Flow and Density Prediction

    Qiu, Han / Zheng, Qinkai / Msahli, Mounira et al. | IEEE | 2021


    Traffic flow prediction method based on graph convolutional network

    XU HUI / MENG FANYU / REN QIANQIAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Urban traffic flow space-time prediction scheme based on graph convolutional neural network

    ZHANG RONGQING / WANG HANQIU / LI BING | Europäisches Patentamt | 2021

    Freier Zugriff

    Traffic flow prediction method based on cyclic attention coupled graph convolutional network

    CHEN LING / CHEN WEIQI | Europäisches Patentamt | 2020

    Freier Zugriff

    Traffic flow prediction method based on multi-view dynamic graph convolutional network

    HUANG XIAOHUI / YE YUMING / LING JIAHAO et al. | Europäisches Patentamt | 2022

    Freier Zugriff