The invention discloses a road slope parameter identification method and system based on a recurrent neural network, and relates to the technical field of data processing. The method comprises the following steps: acquiring gradient data of a road gradient through which a vehicle passes, and dividing the gradient data into a training set, a verification set and a test set; preprocessing the gradient data, and converting the preprocessed gradient data into a three-dimensional structure by using a sliding window method; establishing gradient parameter identification models of different structures by adopting different recurrent neural networks; initializing a network structure and hyper-parameters of each model, identifying the model for each gradient parameter, training the model by using the training set and the verification set, and updating model parameters; and inputting the test set into each trained model, verifying the precision and generalization ability of each model, performing comparative analysis to obtain an optimal slope parameter identification model, and obtaining a vehicle road slope parameter identification result. According to the invention, the road gradient can be monitored and predicted in real time, and the accuracy and real-time performance of road gradient identification are improved.

    本发明公开了一种基于循环神经网络的道路坡度参数辨识方法及系统,涉及数据处理技术领域。其中,该方法包括:采集车辆通过道路坡度的坡度数据,划分为训练集、验证集和测试集;对坡度数据进行预处理,使用滑动窗口法将预处理后的坡度数据转换为三维结构;采用不同的循环神经网络建立不同结构的坡度参数辨识模型;初始化各模型的网络结构和超参数,针对每种坡度参数辨识模型,利用训练集和验证集训练模型,更新模型参数;将测试集输入训练后的各模型,验证各模型的精度和泛化能力,对比分析得出最佳的坡度参数辨识模型,获得车辆道路坡度参数辨识结果。通过本发明,可以实时监测和预测道路坡度,提升道路坡度辨识的准确性和实时性。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Road slope parameter identification method and system based on recurrent neural network


    Weitere Titelangaben:

    基于循环神经网络的道路坡度参数辨识方法及系统


    Beteiligte:
    LIU CHUNBAO (Autor:in) / JIAO CHENYUE (Autor:in) / XU WENBO (Autor:in) / YANG KONGHUA (Autor:in) / QIAN XU (Autor:in) / HUANG HONGTAO (Autor:in) / TANG YUXIAO (Autor:in)

    Erscheinungsdatum :

    01.04.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    RECURRENT NEURAL NETWORK ARCHITECTURES FOR VULNERABLE ROAD USER TRAJECTORY PREDICTION

    Xiong, Hui / Flohr, Fabian B. / Wang, Sijia et al. | British Library Conference Proceedings | 2019


    Recurrent Neural Network Architectures for Vulnerable Road User Trajectory Prediction

    Xiong, Hui / Flohr, Fabian B. / Wang, Sijia et al. | IEEE | 2019


    Road Characteristic Identification based on Wavelet Neural Network

    Junhui, L. / Rongzheng, Z. / Jianjun, D. et al. | British Library Conference Proceedings | 2009


    Road characteristic identification based on wavelet neural network

    Lu Junhui, / Zhou Rongzheng, / Ding Jianjun, et al. | IEEE | 2009


    Road slope estimation method and system

    XIA TIANXING / LI PANPAN / LIU ZONGJIAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff