The invention discloses a complex traffic flow prediction method based on dynamic graph convolution and interactive learning, and belongs to the technical field of intelligent traffic, and the method achieves the effective long-term traffic flow prediction through embedding a graph convolution network into an interactive learning structure, and capturing the time and space dependence at the same time. A new dynamic graph convolution method is used, a combined graph generated from an adaptive and learnable adjacent matrix in real time is used to capture spatial correlation changing in real time in a traffic network, then a space-time adaptive converter is integrated, global and local features can be extracted, and the spatial correlation is obtained. According to the method, the challenge of traffic flow prediction aiming at complex correlation and nonlinearity of urban traffic flow in time and space can be solved, the advantages of dynamic graph convolution and interactive learning are combined, a new efficient model of dynamic graph convolution and interactive network is provided, the dynamic spatial and temporal characteristics of the traffic flow are reflected, and the traffic flow prediction efficiency is improved. Therefore, traffic flow prediction can be realized more accurately.

    本发明公开了基于动态图卷积与交互学习的复杂交通流预测方法,属于智能交通技术领域,本申请通过将图卷积网络嵌入到交互式学习结构中,同时捕获时间和空间依赖性,从而实现有效的长期交通流预测,再利用了一种新的动态图卷积方法,使用从自适应和可学习的邻接矩阵中实时生成的合并图来捕获交通网络中实时变化的空间相关性,接着再集成了一个时空自适应变换器,可以提取全局和局部特征,本申请可解决针对城市交通流在时间和空间上存在的复杂相关性和非线性进行交通流预测的挑战,且本申请结合了动态图卷积和交互式学习的优点,提出了一种新的动态图卷积和交互网络的高效模型,反映了交通流的动态时空特征,因而能够更加精准地实现交通流预测。


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Complex traffic flow prediction method based on dynamic graph convolution and interactive learning


    Weitere Titelangaben:

    基于动态图卷积与交互学习的复杂交通流预测方法


    Beteiligte:
    CHEN PENG (Autor:in) / HE HONGXIA (Autor:in) / LI XI (Autor:in) / SHAN WENYU (Autor:in) / WU LEI (Autor:in) / XIA YUNNI (Autor:in) / CAO SHUFENG (Autor:in) / ZENG SHENGKE (Autor:in)

    Erscheinungsdatum :

    08.04.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Chinesisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Traffic flow prediction method based on interactive dynamic graph convolution and probability sparse attention

    ZHANG HONG / CHEN LINBIAO / CHEN LINLONG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic flow prediction method based on interactive space enhanced graph convolution model

    LI QIN / XU PAI / ZHENG ZUOCAI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic prediction method based on dynamic graph convolution

    FAN JIN / WENG WENCHAO / TIAN HAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Double-end graph convolution traffic flow prediction method with graph learning

    REN QIANQIAN / LI ZILONG / ZHANG YANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Dynamic graph convolution traffic speed prediction method

    LIU QILIANG / YUAN HAOTAO / YANG LIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff