Imaging systems and methods that implement a deep learning network are disclosed. The deep learning network utilizes pose information associated with at least some identified objects. The network is pruned, to reduce the amount of information processed and to optimize runtime processing when the network is deployed. In operation, the network identifies objects, and propagates pose information for at least some of the objects or components of identified objects. The network can be deployed as part of a processing system of an imaging system included as part of a remote platform.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Optimized focal-plane electronics using vector-enhanced deep learning


    Beteiligte:
    SCHMIDT ZACHARY (Autor:in) / STAPLE BEVAN D (Autor:in) / WALLACE CYNTHIA (Autor:in) / LEE JENNIFER H (Autor:in)

    Erscheinungsdatum :

    23.11.2021


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B64C AEROPLANES , Flugzeuge / G06K Erkennen von Daten , RECOGNITION OF DATA / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung




    The Proximity Electronics of the GAIA Focal Plane

    Fernandez, A. / Peran, F. / Elorz, A. et al. | British Library Conference Proceedings | 2011


    Cryogenic MOST for focal plane readout electronics [3360-18]

    Bock, N. E. / Cherepov, E. I. / SPIE | British Library Conference Proceedings | 1998



    Focal Plane Array Receiver for Deep-Space Communication

    Vilnrotter, V. / Britcliffe, M. / Hoppe, D. | IEEE | 2008