In various examples, a deep neural network (DNN) is trained—using image data alone—to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors—such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that—in deployment—more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN.
DISTANCE ESTIMATION TO OBJECTS AND FREE-SPACE BOUNDARIES IN AUTONOMOUS MACHINE APPLICATIONS
19.10.2023
Patent
Elektronische Ressource
Englisch
IPC: | G06V / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung |
Distance estimation to objects and free-space boundaries in autonomous machine applications
Europäisches Patentamt | 2021
|DISTANCE ESTIMATION TO OBJECTS AND FREE-SPACE BOUNDARIES IN AUTONOMOUS MACHINE APPLICATIONS
Europäisches Patentamt | 2022
|DISTANCE ESTIMATION TO OBJECTS AND FREE-SPACE BOUNDARIES IN AUTONOMOUS MACHINE APPLICATIONS
Europäisches Patentamt | 2020
|Distance estimation to objects and free-space boundaries in autonomous machine applications
Europäisches Patentamt | 2024
|Distance estimation to objects and free-space boundaries in autonomous machine applications
Europäisches Patentamt | 2023
|