Highly automated driving systems need to master a highly complex environment and are required to show meaningful behavior in any situation occurring in mixed traffic with humans. Deriving a sufficiently complete and consistent set of system-level requirements capturing all possible traffic situations is a significant problem that has not been solved in existing literature. In this paper, we propose a new method called SOCA addressing this problem by introducing a novel abstraction of traffic situations, called zone graph, and using this abstraction in a morphological behavior analysis. The morphological behavior analysis enables us to derive a set of system-level requirements with guarantees on completeness and consistency. We illustrate our method on a slice-of-reality example from the automated driving domain.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SOCA: Domain Analysis for Highly Automated Driving Systems


    Beteiligte:
    Butz, Martin (Autor:in) / Heinzemann, Christian (Autor:in) / Herrmann, Martin (Autor:in) / Oehlerking, Jens (Autor:in) / Rittel, Michael (Autor:in) / Schalm, Nadja (Autor:in) / Ziegenbein, Dirk (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    849908 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Security: Soca uses data mining to target fraud

    British Library Online Contents | 2007



    Next exit: highly automated driving

    Glander,K.H. / Glander,K. / Van Rooij,L. et al. | Kraftfahrwesen | 2016


    Steps towards highly automated driving

    Huisman, R. / Kabos, T. / Beenakkers, M. et al. | British Library Conference Proceedings | 2017


    Highly automated driving for commercial vehicles

    Kirschbaum,M. / Daimler,Stuttgart,DE | Kraftfahrwesen | 2015