This paper uses the Bi-directional Gated Recurrent Unit(BI-GRU) recurrent neural network, combined with the historical data of the high-speed toll station entrances and exits at different time nodes on weekdays, weekends and holidays, to predict the traffic flow of vehicles entering the province and reaching key tourist cities, and realize the expressway in Gansu Province. It can be seen from the experimental results that in a larger time and space range, BI-GRU has improved prediction accuracy compared with standard Gated Recurrent Unit (GRU) and Long short-term memory (LSTM), and its prediction ability for data with large fluctuations and peak data is more prominent.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of freeway self-driving traffic flow based on bidirectional GRU recurrent neural network


    Beteiligte:
    Deng, Yubo (Autor:in) / Zhang, Yu (Autor:in) / Lv, Haoyin (Autor:in) / Yang, Yi (Autor:in) / Wang, Yongchen (Autor:in)


    Erscheinungsdatum :

    01.08.2022


    Format / Umfang :

    333750 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Freeway Traffic Flow Modeling Based on Recurrent Neural Network and Wavelet Transform

    Liang, X.R. / Wei, Y.X. / China Communications and Transportation Association; Transportation & Development Institute (American Society of Civil Engineers) | British Library Conference Proceedings | 2007



    Freeway Traffic Flow Modeling Based on Neural Network

    Xiao, J.-M. / Wang, X.-H. / IEEE | British Library Conference Proceedings | 2003


    Freeway traffic flow modeling based on neural network

    Jian-Mei Xiao, / Xi-Huai Wang, | IEEE | 2003


    Short-Term Freeway Traffic Flow Prediction: Bayesian Combined Neural Network Approach

    Zheng, W. / Lee, D.-H. / Shi, Q. | British Library Online Contents | 2006