This study aims to detect vehicles that are on the side of the parking lot so that it can be used as a smart parking system for parking management and find out information on the availability of parking spaces. In this study, the authors used the Haar Cascade Classifier, and YOLOv3 then compared them to get the best accuracy in detecting parked cars. The test was carried out using ten different scenarios, the highest accuracy obtained in this study was 96.88% using YOLOv3 with a probability of 90%. In contrast, the accuracy obtained by using the Haar Cascade Classifier is 63.34%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Car Detection in Roadside Parking for Smart Parking System Based on Image Processing


    Beteiligte:


    Erscheinungsdatum :

    01.07.2020


    Format / Umfang :

    624219 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Roadside parking detection system

    LI QIJIA / WANG TAO / QU FEIYU | Europäisches Patentamt | 2020

    Freier Zugriff

    Unmanned roadside parking space parking management system

    LI DAPENG / ZHONG BINGDA / PAN RUN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Roadside parking space parking management method

    LI DAPENG / ZHONG BINGDA / WANG YANQI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Roadside parking management system

    KOU WANGDONG / JIANG HAIYANG / LI HONGJIAN | Europäisches Patentamt | 2021

    Freier Zugriff

    Dynamic roadside parking system

    CHENG GUANGWEI | Europäisches Patentamt | 2020

    Freier Zugriff