A properly designed automotive sensor monitoring and diagnostic system must be capable of detecting and distinguishing sensor and component malfunctions in the presence of signal noise, varying vehicle operating conditions and multiple faults. The technique presented in this paper addresses these objectives through the implementation of a multivariate state estimation algorithm based upon pattern recognition methodology coupled with a statistically-based hypothesis test. Utilizing a residual signal vector generated from the difference between the estimated and measured current states of a system, disturbances are detected and identified with statistical hypothesis testing. Since the hypothesis testing utilizes the inherent noise on the signals to obtain a conclusion and the state estimation algorithm requires only a majority of the sensors to be functioning to ascertain the current state, this technique has proven to be quite robust and fault-tolerant. Several examples of its application are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A fault-tolerant sensory diagnostic system for intelligent vehicle application


    Beteiligte:
    Singer, R.M. (Autor:in) / Gross, K.C. (Autor:in) / Wegerich, S. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    746632 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Fault-tolerant Sensory Diagnostic System for Intelligent Vehicle Application

    Singer, R. / Gross, K. / Wegerich, S. et al. | British Library Conference Proceedings | 1995


    Parallel algorithm for constructing k-valued fault-tolerant diagnostic tests in intelligent systems

    Yankovskaya, A. E. / Kitler, S. V. | British Library Online Contents | 2012


    Parallel algorithm of construction of k-valued fault-tolerant diagnostic tests in intelligent systems

    Yankovskaya, A. E. / Kitler, S. V. | British Library Online Contents | 2011



    Fault tolerant control using self-diagnostic smart actuator

    Yang, Inseok / Kang, Kyungmin / Lee, Dongik | Tema Archiv | 2009