Obstacle detection is a fundamental task for Advanced Driver Assistance Systems (ADAS) and Self-driving cars. Several commercial systems like Adaptive Cruise Controls and Collision Warning Systems depend on them to notify the driver about a risky situation. Several approaches have been presented in the literature in the last years. However, most of them are limited to specific scenarios and restricted conditions. In this paper we propose a fast obstacle estimation to stereo cameras followed by a robust road estimation method. Our approach uses only disparity maps and works with a low number of pixels instead of the entire image. Experimental tests have been carried out in different conditions using the standard ROAD-KITTI benchmark, obtaining positive results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road estimation with sparse 3D points from stereo data


    Beteiligte:
    Shinzato, Patrick Y. (Autor:in) / Gomes, Diego (Autor:in) / Wolf, Denis F. (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    2877427 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Road geometry generation from sparse data

    DORUM OLE HENRY | Europäisches Patentamt | 2020

    Freier Zugriff

    Road Geometry Generation from Sparse Data

    DORUM OLE HENRY | Europäisches Patentamt | 2016

    Freier Zugriff


    Road Gradient Estimation Method and System based on Stereo Camera

    SON HAENG SEON / MIN KYUNG WON / LEE SEON YOUNG | Europäisches Patentamt | 2019

    Freier Zugriff