This paper investigates a trajectory tracking control problem of autonomous vehicles. Existing methods can suffer from complex control algorithms and a lack of tracking stability at high speed, which negatively affects tracking performance. This study decouples the vehicle's motion by considering the Frenet frame and Frenet equations. A lateral control law based on the linear-quadratic-regulator (LQR) imposes the tracking errors to converge to zero stably and quickly, providing the optimal solution in real-time due to adaptive gains. Regarding the steady-state errors, they are eliminated through the correction of the feedforward term. Furthermore, the designed double proportional-integral-derivative (PID) controller realizes not only the longitudinal control but also the velocity tracking. By the proposed strategy, the tracking accuracy and stability can be enhanced regardless of the vehicle speed, verified by the simulation results from different driving scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Tracking for Autonomous Vehicles based on Frenet Frame


    Beteiligte:
    Yang, Tianqi (Autor:in) / Hu, Juqi (Autor:in) / Zhang, Youmin (Autor:in)


    Erscheinungsdatum :

    19.11.2022


    Format / Umfang :

    646816 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Frenet-Based Algorithm for Trajectory Prediction

    Avanzini, G. | Online Contents | 2004





    A Frenet-Based Algorithm for Trajectory Prediction

    Avanzini, G. / AIAA | British Library Conference Proceedings | 2000