This paper aims at extracting the typical and significant features of the traffic network by using variant feature extraction methods. Combined with the intrinsic tempo-spatial characteristics of traffic flow data, data mining technique is introduced to extract the main features of the temporal and spatial relationship and the typical patterns of the traffic network. We introduce three methods in feature extraction: principal component analysis (PCA), Robust PCA and Kernel PCA. By selecting the eigenvalues according to decreasing magnitude of eigenvalues, we design a transform matrix to reduce the dimensionality of the original matrix, as well as obtain the features of the traffic network. By comparing the results of feature extraction of different methods, we find a better way to extract the typical features in urban traffic data and attempt to explain some the features


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparative study on feature extraction of mass traffic data using multiple methods


    Beteiligte:
    Wang, Yin (Autor:in) / Hu, Jianming (Autor:in) / Zhang, Zuo (Autor:in)


    Erscheinungsdatum :

    01.06.2009


    Format / Umfang :

    4061074 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Comparative Study on Feature Extraction of Mass Traffic Data Using Multiple Methods

    Wang, Y. / Hu, J. / Zhang, Z. | British Library Conference Proceedings | 2009


    Structural Feature Extraction Using Multiple Bases

    Nishida, H. | British Library Online Contents | 1995


    Spatial and temporal feature extraction method based on traffic data

    XIAO HONGBO / XIAO JIANHUA / DING LIMING et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Kernel PCA for road traffic data non‐linear feature extraction

    Yong‐dong, Wang / Dong‐wei, Xu / Peng, Peng et al. | Wiley | 2019

    Freier Zugriff

    Kernel PCA for road traffic data non-linear feature extraction

    Yong-dong, Wang / Dong-wei, Xu / Peng, Peng et al. | IET | 2019

    Freier Zugriff