In this paper, we consider the automotive orthogonal frequency division modulation-radar in millimeter wave band. To avoid interference between different radar systems, resources need to be split and then used by different radar systems. This thus degrades the radar performance as compared to the radar system having full resources (FRs). To mitigate this issue, we develop a deep learning-based range-Doppler (R-D) map reconstruction approach along with a time-frequency resource allocation scheme. In the reconstruction approach, we propose a deep learning-based convolutional neural network to reconstruct the R-D map such that the reconstructed R-D map can be close to the R-D map under FRs. In the resource allocation scheme, we propose a block-wise interleaved method that can facilitate the proposed reconstruction approach. Simulation results show that our proposed approach can effectively mitigate the performance degradation of radar systems when resources are shared among users.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning-Based Range-Doppler Map Reconstruction in Automotive Radar Systems


    Beteiligte:
    Hsu, Hao-Wei (Autor:in) / Lin, Yu-Chien (Autor:in) / Lee, Ming-Chun (Autor:in) / Lin, Chia-Hung (Autor:in) / Lee, Ta-Sung (Autor:in)


    Erscheinungsdatum :

    01.04.2021


    Format / Umfang :

    3736603 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    DAROD: A Deep Automotive Radar Object Detector on Range-Doppler maps

    Decourt, Colin / VanRullen, Rufin / Salle, Didier et al. | IEEE | 2022


    Doppler-Resilient 802.11ad-Based Ultrashort Range Automotive Joint Radar-Communications System

    Duggal, Gaurav / Vishwakarma, Shelly / Mishra, Kumar Vijay et al. | IEEE | 2020


    GAN-CRT: A Novel Range-Doppler Estimation Method in Automotive Radar Systems

    Pan, Yun-Han / Lin, Chia-Hung / Lee, Ta-Sung | IEEE | 2020


    Efficient Range-Doppler Processing for Random Stepped Frequency Radar in Automotive Applications

    Al-Hourani, Akram / Evans, Robin J. / Moran, Bill et al. | IEEE | 2017