Estimating a driver’s lane-change (LC) intent is very important so as to avoid traffic accidents caused by improper LC maneuvers. This paper proposes a lane-change Bayesian network (LCBN) incorporated with a Gaussian mixture model (GMM), termed as LCBN-GMM, to estimate a driver’s LC intent considering a driver’s driving style over varying scenarios. According to the scores made by participates with a behavioral-psychological questionnaire, three driving styles are classified. In order to get more effective labeled LC and lane-keep (LK) data for model training, we propose a gaze-based labeling (GBL) method by monitoring a drivers’s gaze behavior, instead of using a time-window labeling method. The capability of LCBN-GMM to estimate a driver’s lane-change intent is evaluated in different LC scenarios and driving styles, in comparison to support vector machine and Naive Bayes. Data are collected in a seat-box-based driving simulator where 32 drivers, consisting of 9 aggressive, 15 neutral, and 8 conservative drivers, participated. Experimental results demonstrate that the LCBN-GMM with GBL achieves the best performance, estimating a driver’s LC intent an average of 4.5 s ahead of actual LC maneuvers with 78.2% accuracy considering both driving style and contextual traffic, compared with other approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimating Driver’s Lane-Change Intent Considering Driving Style and Contextual Traffic


    Beteiligte:
    Li, Xiaohan (Autor:in) / Wang, Wenshuo (Autor:in) / Roetting, Matthias (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    3109207 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    DEVICE TO ASSIST DRIVER'S LANE CHANGE WHILE DRIVING

    EUN JEE SOOK | Europäisches Patentamt | 2015

    Freier Zugriff



    XGBoost Lane-Changing Decision Model Considering Driving Style

    Zhao, Yang / Li, Yi / Cheng, Pengle | Springer Verlag | 2024