A learning-based nonlinear model predictive control (L-NMPC) scheme is designed for the iterative task of filming a race-car using a gimbaled camera mounted on a fixed-wing autonomous aerial vehicle (AAV). The controller is capable of avoiding the environmental obstacles that block the path of the AAV. It also ensures that the car always lies in the field of view (FOV) of the camera while satisfying the control and state constraints. The controller is able to learn from the previous iterations and improve the tracking performance with the help of reinforcement learning (RL). Simulation results are given to demonstrate the efficacy of the proposed learning-based control scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning-based NMPC Framework for Car Racing Cinematography Using Fixed-Wing UAV


    Beteiligte:
    Soni, Dev (Autor:in) / Manoharan, Amith (Autor:in) / Tyagi, Prakrit (Autor:in) / Sujit, P. B. (Autor:in)


    Erscheinungsdatum :

    21.06.2022


    Format / Umfang :

    3767982 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Direct NMPC for Post-Stall Motion Planning with Fixed-Wing UAVs

    Basescu, Max / Moore, Joseph | ArXiv | 2020

    Freier Zugriff

    Fixed-Wing UAV Path-Following Control via NMPC on the Lowest Level

    Reinhardt, Dirk / Gros, Sebastien / Johansen, Tor Arne | IEEE | 2023




    UAVs in Cinematography

    Hoyos, Carlos | AIAA | 2003