TheNormal Distribution Transform Occupancy Map (NDT OM) is a mapping algorithm able to represent a dynamic 3D environment. The resulting map has fixed boundaries, thus a robot with unbounded displacement might fall outside of the map due to memory limitation. In this paper, a recentering algorithm called NDT RC is proposed to avoid this issue. NDT RC extends the use of NDT OM for vehicles with unbounded displacements. NDT RC provides a seamless translation of the map as the robot gets far from the center of the previous map. The influence of NDT RC on the precision of the estimated trajectory of the robot, or odometry, is examined on two publicly available datasets, the KITTI and Ford datasets. An analysis of the sensitivity of the NDT RC to its tuning parameters is carried out using the Ford dataset, while the KITTI dataset is used to measure the influence of the density of the input point cloud. The results show that the proposed recentering strategy improves the accuracy of the odometry calculated by registering the latest lidar scan on the generated map compared to other NDT based approaches (NDT OM, NDT OM Fusion, SE-NDT). In particular, the proposed method, which does not perform loop closure, reduces the mean absolute translation error by 16% and the runtime by 88% compared to the NDT OM Fusion on the Ford dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    NDT RC: Normal Distribution Transform Occupancy 3D Mapping With Recentering


    Beteiligte:
    Courtois, Hugo (Autor:in) / Aouf, Nabil (Autor:in) / Ahiska, Kenan (Autor:in) / Cecotti, Marco (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2024


    Format / Umfang :

    1816331 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DELIMITER-BASED OCCUPANCY MAPPING

    POPLAWSKI JAMES / JOSHI AVDHUT / JOHN WILSON MAKESH PRAVIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Evidential occupancy grid mapping with stereo-vision

    Yu, Chunlei / Cherfaoui, Veronique / Bonnifait, Philippe | IEEE | 2015


    Extending occupancy grid mapping for dynamic environments

    Wessner, Joseph / Utschick, Wolfgang | IEEE | 2018


    OCCUPANCY MAPPING FOR AUTONOMOUS CONTROL OF A VEHICLE

    SLOBODYANYUK VOLODIMIR / JOSHI AVDHUT / SUBRAMANIAN SUNDAR | Europäisches Patentamt | 2023

    Freier Zugriff

    Real-time Occupancy Mapping System for Autonomous Vehicles

    MISHRA LALAN JEE / WIETFELDT RICHARD DOMINIC / CZOMPO JOSEPH | Europäisches Patentamt | 2016

    Freier Zugriff