In this paper a feature and model based approach to real-time vehicle tracking and classification is described. We proceed in two steps: 1) we establish correspondence between model and image features by an optimization algorithm; and 2) based on this correspondence, a matching vector is derived and used as input to either a Bayes classifier, a neural net or a combination of both. The current implementation updates the model parameters (position and scale) at a rate of 8-12 frames per second.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time vehicle tracking and classification


    Beteiligte:
    Noll, D. (Autor:in) / Werner, M. (Autor:in) / von Seelen, W. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    716995 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Vehicle Tracking and Classification

    Noll, D. / Werner, M. / Von Seelen, W. et al. | British Library Conference Proceedings | 1995


    Real-Time Vehicle Tracking System

    V, Indhumathi. / S, Divyashree. / S, Dilakesh. et al. | IEEE | 2024


    Real-time vehicle tracking on highway

    Hsu, W.L. / Liao, H.Y.M. / Jeng, B.S. et al. | IEEE | 2003


    Vehicle real-time video tracking device

    ZONG XILONG / CHENG CHAOYANG / JI JIAXING et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Real-Time Vehicle Tracking on Highway

    Hsu, W.-L. / Liao, H. Y. M. / Jeng, B. S. et al. | British Library Conference Proceedings | 2003