Short-term prediction of traffic flows is an integral component of proactive traffic management systems. Prediction during abnormal conditions, such as incidents, is important for such systems. In this paper, three different models with increasing information in explanatory variables are presented. Time Delay and Recurrent Neural Networks and the k-Nearest Neighbour (kNN) algorithms are chosen as the machine learning tools in these models. The models are tested during both normal and incident conditions. The results indicate that historical patterns provide less predictive information during incidents.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparison of modelling approaches for short term traffic prediction under normal and abnormal conditions


    Beteiligte:
    Fangce Guo, (Autor:in) / Polak, J W (Autor:in) / Krishnan, R (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    1686983 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-model ensemble for short-term traffic flow prediction under normal and abnormal conditions

    Chen, Xiqun (Michael) / Zhang, Shuaichao / Li, Li | IET | 2018

    Freier Zugriff

    Multi‐model ensemble for short‐term traffic flow prediction under normal and abnormal conditions

    Chen, Xiqun (Michael) / Zhang, Shuaichao / Li, Li | Wiley | 2019

    Freier Zugriff


    Dynamic Procedure for Short-Term Prediction of Traffic Conditions

    Lin, W.-H. / Lu, Q. / Dahlgren, J. et al. | British Library Conference Proceedings | 2002


    Short-term traffic prediction under normal and incident conditions using singular spectrum analysis and the k-nearest neighbour method

    Guo, F. / Krishnan, R. / Polak, J.W. et al. | British Library Conference Proceedings | 2012