Big Data analytics for intrusion detection is an important topic in cybersecurity. Network flows and system events generate big data, which often leads to challenges in intrusion detection with high efficiency and good accuracy. This paper focuses on the ‘Variety’ and ‘Veracity’ of big data characteristics in network traffic and attacks. Datasets with various data types are analyzed; data duplicates removal and missing values detection are performed. A clustering analysis based on k-means are also conducted.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Big Data Analytics of Network Traffic and Attacks


    Beteiligte:
    Wang, Lidong (Autor:in) / Jones, Randy (Autor:in)


    Erscheinungsdatum :

    01.07.2018


    Format / Umfang :

    768014 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Extensible analytics and recommendation engine for network traffic data

    VERES GREG / LOOP SANDRA | Europäisches Patentamt | 2022

    Freier Zugriff

    Extensible analytics and recommendation engine for network traffic data

    VERES GREG / LOOP SANDRA | Europäisches Patentamt | 2024

    Freier Zugriff

    EXTENSIBLE ANALYTICS AND RECOMMENDATION ENGINE FOR NETWORK TRAFFIC DATA

    VERES GREG / LOOP SANDRA | Europäisches Patentamt | 2016

    Freier Zugriff

    MITIGATION OF NETWORK ATTACKS BY PRIORITIZING NETWORK TRAFFIC

    ST PIERRE BRIAN | Europäisches Patentamt | 2023

    Freier Zugriff

    Virtual network topology adaptability based on data analytics for traffic prediction

    Morales Alcaide, Fernando / Ruiz Ramírez, Marc / Gifre Renom, Lluís et al. | BASE | 2017

    Freier Zugriff