The paper proposes a frontier based strategy for exploration. Unlike traditional frontier based approaches, a computationally efficient approach is proposed, which does not require to process all the frontiers in a map frequently, and is suitable for on-board computing. To achieve this, the global set of frontiers is divided into three subsets. Each subset is associated with a distinct planning strategy, which allows exploration in a computationally efficient way. Complexity analysis conveys the superiority of the proposed approach in terms of computational load. Performance of the proposed approach is validated in simulation by employing a quadrotor in large-scale and complex problem setups, e.g., powerplant, bridge structure, and typical office like scenario. Simulation results confirm the efficacy of the proposed approach over state-of-the-art (SoA) algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Computationally Efficient UAV Exploration Strategy for Uncertain Complex Environments


    Beteiligte:
    Ludhiyani, Mohit (Autor:in) / Sadhu, Arup Kumar (Autor:in) / Bera, Titas (Autor:in) / Dasgupta, Ranjan (Autor:in)


    Erscheinungsdatum :

    05.03.2022


    Format / Umfang :

    2526192 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exploration-Exploitation Guided Drone Dispatch Strategies in Uncertain Environments

    Wei, Sihang / Phanse, Soham / Koduru, Teja et al. | AIAA | 2024


    Efficient Environment Guided Approach for Exploration of Complex Environments

    Butters, D / Jonasson, ET / Stuart-Smith, R et al. | BASE | 2020

    Freier Zugriff


    Computationally Efficient Multibody Simulations

    Ramakrishnan, J. / Kumar, M. / National Aeronautics and Space Administration | British Library Conference Proceedings | 1994


    Computationally efficient face detection

    Romdhani, S. / Torr, P. / Scholkopf, B. et al. | IEEE | 2001