Cognitive networking is a valuable enabler to improve the capability of intelligent transportation system (ITS) by analyzing and utilizing the heterogeneous traffic information. However, the significant increase in the amount of decision-making tasks makes it difficult to guarantee real-time performance of decision response. This paper focuses on the problem of the quality and real-time assurance of collaborative decision-making response in large-scale ITS during multi-task parallelism execution. First, a collaborative decision architecture with cognitive networking is developed, which introduces the advanced 6G communication technology to enhance information interaction capability of vehicle-road-cloud collaboration, and lays the foundation for multi-task real-time decision-making with inevitable fuzzy information in the perception process. Then, a multi-task parallel multi-granularity collaborative decision model (MPMCD) is designed to improve knowledge discovery ability for decision-making process by building multi-granularity information structures. An AI-driven cognitive networking collaborative decision-making (ACNCD) algorithm is further proposed based on MPMCD model to support multi-task parallel vehicle-road-cloud collaborative real-time decision. Extensive simulation experiments are carried out to evaluate ACNCD algorithm in terms of several performance criteria including decision response time, accuracy, and accident rate. The obtained results show that the comprehensive decision-making performance of ACNCD outperforms other relevant existing algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Granularity Collaborative Decision With Cognitive Networking in Intelligent Transportation Systems


    Beteiligte:
    Lin, Kai (Autor:in) / Gao, Jian (Autor:in) / Li, Yihui (Autor:in) / Savaglio, Claudio (Autor:in) / Fortino, Giancarlo (Autor:in)


    Erscheinungsdatum :

    01.01.2023


    Format / Umfang :

    2366615 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Networking Simulation for Intelligent Transportation Systems

    Hilt, Benoit / Berbineau, Marion / Vinel, Alexey et al. | TIBKAT | 2017


    Guest Editorial Introduction to the Special Issue on Cognitive Networking for Intelligent Transportation Systems

    Zhang, Yin / Al-Fuqaha, Ala / Wang, Hua et al. | IEEE | 2023

    Freier Zugriff

    BSL: Sustainable Collaborative Inference in Intelligent Transportation Systems

    Luo, Chengwen / Chen, Jiongzhang / Feng, Xingyu et al. | IEEE | 2023


    Implementation and Demonstration of WAVE Networking Services for Intelligent Transportation Systems

    Miao, M. / Zheng, Q. / Zheng, K. et al. | British Library Conference Proceedings | 2014


    Implementation and Demonstration of WAVE Networking Services for Intelligent Transportation Systems

    Miao, Minpeng / Zheng, Qiang / Zheng, Kan et al. | Springer Verlag | 2014