The collected crossroad data is clustered through an unsupervised machine learning algorithm to find the internal connections between different traffic intersections. This paper hopes that in the future traffic jams solving process, clustering algorithms can be used for reference to aggregate the similar traffic junction control experience into a same category, to guide relevant technical personnel to quickly find out the cause of the congestion problem in the urban traffic road network, thus formulating a reasonable and feasible traffic jam control plan based on the same category of traffic junction control experience.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimization and application of crossroad similarity matching based on the clustering algorithm


    Beteiligte:
    Wei, Lu (Autor:in) / Feng, Guanghui (Autor:in) / Jiahui, Chen (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    1885333 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CROSSROAD ESTIMATION DEVICE

    AKAMINE YUSUKE / KONDO KATSUHIKO / MIYAKE YASUYUKI | Europäisches Patentamt | 2020

    Freier Zugriff

    Crossroad transit system

    SONG CHANG HO | Europäisches Patentamt | 2021

    Freier Zugriff

    CROSSROAD ESTIMATION DEVICE

    AKAMINE YUSUKE / KONDO KATSUHIKO / MIYAKE YASUYUKI | Europäisches Patentamt | 2020

    Freier Zugriff

    Simulation of Crossroad Traffic

    Boris Tovornik / Drago Sever / Daniel Rogač | DOAJ | 2012

    Freier Zugriff

    California at a crossroad

    Barrow, Keith | IuD Bahn | 2008