The localization is always an important research topic in the field of intelligent vehicle. This paper proposed a novel accurate localization method for intelligent vehicle navigation in loose constraint area (LCA) that uses only a single monocular camera. First, to eliminate the impact of the perspective effect and reduce the computational dimension, Harris corner feature points of the raw image are projected to the Inverse Perspective Image. Match them with feature point from the feature local map, using Normalized Cross-Correlation algorithm (NCC), calculate the optimal localization of vehicle using Random Sample Consensus algorithm (RANSAC) assisted Extended Kalman filter and then, update the feature local map. The proposed methodology is validated in the real world using an intelligent vehicle; it also has high position accuracy and robustness in the complex illumination.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision based method for the localization of intelligent vehicles in loose constraint area


    Beteiligte:
    Liu, Xiaonan (Autor:in) / Xiong, Guangming (Autor:in) / Gong, Jianwei (Autor:in) / Han, Yu (Autor:in) / Chen, Huiyan (Autor:in)


    Erscheinungsdatum :

    01.07.2016


    Format / Umfang :

    892374 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vision Based Global Localization for Intelligent Vehicles

    Xia, T. K. / Yang, M. / Yang, R. Q. | British Library Conference Proceedings | 2006


    Vision Based Global Localization for Intelligent Vehicles

    Xia, T.K. / Yang, M. / Yang, R.Q. | IEEE | 2006


    Vision-based perception for intelligent vehicles

    Broggi, Alberto | IEEE | 2015

    Freier Zugriff


    Ground-Texture-Based Localization for Intelligent Vehicles

    Hui Fang, / Chunxiang Wang, / Ming Yang, et al. | IEEE | 2009