This study aimed to classify vehicles according to their categories, consisting of motorcycles, light vehicles, and heavy vehicles. For this purpose, there were three main techniques discussed: vehicle detection using Background Subtraction, feature extraction using Binary Robust Invariant Scalable Keypoint (BRISK), and vehicle classification using the K-Nearest Neighbors (KNN) algorithm for most cases. The dataset consisted of432 images for the training stage and one video data for the testing stage. The system performance was evaluated by reviewing the BRISK threshold value ranging from 10 to 80 with a k-value on KNN of 6. Results showed that the highest F1 scores were 96%, 86%, and 67% for motorcycles, light vehicles, and heavy vehicles, consecutively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Approach for Vehicle’s Classification Using BRISK Feature Extraction


    Beteiligte:


    Erscheinungsdatum :

    29.07.2021


    Format / Umfang :

    2415122 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Baltic's brisk business

    British Library Online Contents | 2006



    Vehicle's Model Classification Using a Vertical Stereo Camera

    Lee, C. H. / Ahn, J. P. / Kim, Y. M. | British Library Conference Proceedings | 2015


    Vehicle’s Model Classification Using a Vertical Stereo Camera

    Lee, Chi Hak ;Ahn, Jong Pil ;Kim, Young Mo | Trans Tech Publications | 2015


    Brisk Maneuvering Device for Undersea Vehicles

    P. R. Bandyopadhyay | NTIS | 1996