This paper presents two variants of a Bayesian algorithm for vehicle localization which use vehicle motion data, a low-cost GNSS receiver, a gray scale camera, and different digital map data. The key idea of the algorithm is not to extract features like points or lines from the camera image for the Bayes update, but to predict entire images. While the first variant performs this image prediction based on explicit landmark information of a digital map, the second variant predicts camera images directly based on aerial images. In doing so, no conversion step from aerial images to feature maps is necessary. Finally, the paper presents results for both approaches based on extensive test drive data with highly accurate reference data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle localization in urban environments using feature maps and aerial images


    Beteiligte:
    Mattern, N. (Autor:in) / Wanielik, G. (Autor:in)


    Erscheinungsdatum :

    01.10.2011


    Format / Umfang :

    1291819 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust vehicle localization in urban environments using probabilistic maps

    Levinson, Jesse / Thrun, Sebastian | Tema Archiv | 2010




    Using High-Definition maps for precise urban vehicle localization

    Bauer, Sven / Alkhorshid, Yasamin / Wanielik, Gerd | IEEE | 2016


    Accurate Global Localization Using Visual Odometry and Digital Maps on Urban Environments

    Parra Alonso, Ignacio / Llorca, David Fernández / Gavilan, Miguel et al. | IEEE | 2012