Human drivers are endowed with an inborn ability to put themselves in the position of other drivers and reason about their behaviors and intended actions. State-of-the-art driving assistance systems, on the other hand, are generally limited to physical models and ad-hoc safety rules. In order to drive safely amongst humans, autonomous vehicles require a high-level description of the state of traffic participants. This paper presents a probabilistic model for estimating and predicting the behavior of drivers immersed in traffic. The model is defined within a stochastic filtering framework and estimation and prediction are carried out with statistical inference techniques. The approach is validated with real data from a fleet of mining vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A bayesian approach for driving behavior inference


    Beteiligte:
    Agamennoni, G. (Autor:in) / Nieto, J. I. (Autor:in) / Nebot, E. M. (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    476829 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Bayesian Approach for Driving Behavior Inference

    Agamennoni, G. / Nieto, J.I. / Nebot, E. et al. | British Library Conference Proceedings | 2011


    A Bayesian Inference-based approach for extracting driving data with implicit intention

    Huang, Ping / Ding, Haitao / Chen, Hong et al. | Emerald Group Publishing | 2024


    Bayesian Inference

    Prieto Tejedor, Javier | TIBKAT | 2017

    Freier Zugriff

    Bayesian Inference

    Prieto Tejedor, Javier | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2017

    Freier Zugriff

    Bayesian Inference Approach to Learning Coordinated Traffic Behavior for Non-Tracking Sensors

    Bush, L. / Ehn, D. / Liu, F. et al. | British Library Conference Proceedings | 2009