In model partitioning for real-time object detection, part of the model is deployed on a vehicle, and the remaining layers are processed in the cloud. Model partitioning requires transmitting intermediate features to the cloud, which can be problematic, given that the latency requirements are strict. This paper addresses this issue by demonstrating a lightweight feature-sharing strategy while investigating a trade-off between detection quality and latency. We report details on layer partitioning, such as which layers to split in order to achieve the desired accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poster: Lightweight Features Sharing for Real-Time Object Detection in Cooperative Driving


    Beteiligte:


    Erscheinungsdatum :

    26.04.2023


    Format / Umfang :

    175359 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Poster: Safe V2X Communication for Cooperative Automated Driving

    Llatser, Ignacio / Geraldy, Alexander / Jornod, Guillaume et al. | IEEE | 2023


    Bandwidth-Adaptive Feature Sharing for Cooperative LIDAR Object Detection

    Marvasti, Ehsan Emad / Raftari, Arash / Marvasti, Amir Emad et al. | IEEE | 2020



    Poster: Edge-Assisted Unsafe Driving Detection

    Ucar, Seyhan / Sisbot, E. Akin / Oguchi, Kentaro | IEEE | 2023